
Coherent pairing states for the Hubbard model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 L355

(http://iopscience.iop.org/0305-4470/31/18/004)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) L355–L360. Printed in the UK PII: S0305-4470(98)91905-9

LETTER TO THE EDITOR

Coherent pairing states for the Hubbard model

Allan I Solomon†§ and K A Penson‡‖
† Laboratoire de Gravitation et Cosmologie Relativistes, Université Pierre et Marie Curie-CNRS
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Abstract. We consider the Hubbard model and its extensions on bipartite lattices. We define
a dynamical group based on theη-pairing operators introduced by Yang, and define coherent
pairing states, which are combinations of eigenfunctions ofη-operators. These states permit
exact calculations of numerous physical properties of the system, including energy, various
fluctuations and correlation functions, including pairing off-diagonal long-range order to all
orders. This approach is complementary to BCS, in that these are superconducting coherent
states associated with the exact model, although they are not eigenstates of the Hamiltonian.

1. Introduction

The Hubbard model plays a special role in condensed matter physics. It allows one,
within appropriate limits, to model the electronic properties of systems ranging from
insulators to superconductors. It is generally believed that high-Tc superconductivity
may be described by some form of the Hubbard model. Although the model can only
be solved in one dimension, some insight into its properties in general dimensions can
be obtained through the so-calledη-pairing mechanism introduced by Yang [1]. This
mechanism allows one to construct a subset of the exact spectrum of the model. The
eigenfunctions obtained throughη-pairing possess the property of off-diagonal long-range
order (ODLRO) and thus are superconducting. In this letter we introduce a new family
of wavefunctions which are combinations ofη-pairing eigenfunctions. Theη-pairing
procedure has been applied to a number of strongly correlated fermion systems [2–7]. Our
wavefunctions are coherent pairing states (CPS) of the dynamical group of the Hubbard
model. Although not eigenfunctions of the Hamiltonian, they permit exact calculations of
numerous physical properties of the Hubbard model, including the energy, arbitrary moments
of the Hamiltonian, fluctuations and correlation functions, including ODLRO which is shown
to be non-vanishing. The CPS are mathematically related to the variational wavefunctions
used in a mean-field treatment of Bardeen–Cooper–Schrieffer (BCS) type [8].

2. η-pairing and the dynamical group

For the Hubbard model we adopt the definition and notation of Yang [1]. Leta+r and
b+r be real-space creation operators for spin-up and spin-down electrons respectively, i.e.
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c+r↑ = a+r , c+r↓ = b+r with a+r andb+r satisfying the usual fermion anticommutation relations.
Consider a three-dimensional Hubbard model on aL×L×L = M cube (L even) with

periodic boundary conditions. The Hamiltonian is given by

H = T0+ T1+ V (1)

T0 = Aε
∑
k

(a+k ak + b+k bk) (2)

T1 = −B
∑
k

(coskx + cosky + coskz)(a
+
k ak + b+k bk) (3)

V = 2W
∑
r

a+r arb
+
r br (4)

whereε > 0, a+k is the Fourier transform ofa+r , 2W is the on-site Hubbard interaction of
arbitrary sign, andA andB are arbitrary constants. We introduce theη-operators which
create (annihilate) a fermion pair with momentumπ:

η =
∑
r

eiπrarbr =
∑
k

akbπ−k (5)

η+ =
∑
r

eiπra+r b
+
r =

∑
k

b+π−ka
+
k . (6)

It has been shown [1, 9] that the operatorη+ satisfies

[H, η+] = Eη+ (7)

with E = 2Aε + 2W . Equation (7) is typical of a spectrum-generating algebra [10, 11] and
implies that for any power-expandablef (η+)

[H, f (η+)] = Eη+f ′(η+). (8)

Note thatE does not depend onB. The relation equation (7) for the Hubbard model was
derived some time ago [9], but its consequences were only fully exploited by Yang [1]. The
operatorsη satisfy the angular momentum commutation relations ofSU(2):

[η+, η] = 2ηz (9)

ηz = 1
2

∑
r

(n(a)r + n(b)r − 1)

= 1
2

∑
r

nr − 1
2M (10)

where the local occupation numbernr is equal ton(a)r + n(b)r = a+r ar + b+r br. We also
observe from equation (9) that the following relation holds[

η√
M
,
η+√
M

]
= 1− d (11)

whered is the electronic density,d = M−1(
∑
r nr). Equation (11) indicates that for small

electron density the operatorsη/
√
M are approximately bosons [12]. The operatorsη also

satisfy the relations(η+)M+1 = (η)M+1 = 0, reflecting, according to the Pauli-principle, the
impossibility of occupying a given siter by more than one pair(a+b+). For givenM and
using (7) one can produceM exact, normalized eigenstates ofH by applying successive
powers ofη+ on the vacuum state|vac〉. So

|9N 〉 = β(N,M)(η+)N |vac〉 N = 1, . . . ,M (12)
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is a simultaneous eigenstate ofH and of the operatorN2 counting the number of doubly
occupied sites,N2 =

∑
r n

(a)
r · n(b)r ,

H |9N 〉 = NE|9N 〉
N2|9N 〉 = N |9N 〉

(13)

whereβ(N,M) is a normalization factor equal to [1]

β(N,M) =
[
(M −N)!
M!N !

] 1
2

. (14)

Evidently, 〈9N |(η+)r |9N 〉 − δr,0. Note that [H,N2] 6= 0. We observe that|9N 〉 depend
neither on the value nor on the sign ofW . Generally [η,H ] 6= 0 except for the half-filled
band [13].

With this in mind, we embed the HamiltonianH together withη = {η, η+, ηz}, in a
larger, dynamical, group. Define a new operatorJ0 by

J0 = H

E
− ηz. (15)

Using equation (7) and its Hermitian conjugate we find that

[J0,η] = 0. (16)

We conclude that the smallest group containingH is {J0,η}, whereJ0 is the centre of the
group butnot the unit operator. The dynamical group of our Hubbard model is thusU(2).
This would appear to be the first instance of a dynamical group for anexact interacting
many-body system. Relation (16) is essential for the calculation of any expectation values
of H .

3. Coherent pairing states

We introduce a normalized spin coherent state by

|µ〉 = N− 1
2 eµη|0〉

= (1+ |µ|2)−M
2 eµη|0〉 (17)

where the state|0〉 is the filled pair state|0〉 = 1
M! (η

†)M |vac〉. We refer to|µ〉 as acoherent
pairing state. This step is reminiscent of the BCS wavefunction [8], which is however not
related to any Hamiltonian with a local potential energy. In contrast, our states arise from
the exact relations equations (7) and (16). In the limitM →∞, |µ〉 becomes an eigenstate
of η/

√
M and apart from normalization is a harmonic oscillator coherent state [14]. The

state|µ〉 is not an eigenstate ofH . In contrast to|9N 〉 it involves components with different
numbers of particles (pairs) and thus gives rise to non-zero values of〈µ|ηr |µ〉. Further,
using equations (7), (8) and (16) we may calculate〈µ|Hp|µ〉 for any p = 1, 2, 3, . . . in
terms of〈µ|ηr |µ〉. We first calculate〈µ|H |µ〉 by purely algebraic means:

H |µ〉 = N− 1
2 {[H, eµη] + eµηH } 1

M! (η
+)M |vac〉

= N− 1
2 {−Eηµeµη + eµηME} 1

M! (η
+)M |vac〉

= (−µEη +ME)|µ〉
whereN (µ) = (1 + |µ|2)M . The required expectation value〈µ|Hµ〉 becomesME −
µE〈µ|η|µ〉, which, using the results of [14] (formula (4.2)), leads to

〈µ|H |µ〉 = ME

(1+ |µ|2) . (18)
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Formula (18) indicates that the energy of the state|µ〉 (which involves different numbers
of pairs) is equal to the energy of the fully filled state|0〉(ME) reduced by the factor
(1+ |µ|2)−1 6 1. The physical meaning of the parameterµ is obtained from the average
number of pairs in a state|µ〉, 〈µ|N2|µ〉. Since|µ〉 does not depend on the Hamiltonian’s
parameters,

〈µ|N2|µ〉 = 1

2
〈µ| ∂H

∂W
|µ〉 = 1

2

M

1+ |µ|2
∂E

∂W
. (19)

We conclude that

|µ|2 = 1

n̄2
− 1 (20)

wheren̄2 = 〈N2〉/M is the average density of pairs in the state|µ〉. We may extend the set
of states for which exact analysis is available by introducingr-depleted states, defined by
(normalized)

|µ : r〉 = N−
1
2

r ηr |µ〉. (21)

These are analogues of the displaced number states of quantum optics [15]. These states
give rise to a more interesting energy spectrum than the equidistant Yang case, with the gap
between neighbouring depleted states|µ; r〉 and |µ; r − 1〉 being given by

1r(|µ|2) = 〈µ(η
+)r−1Hηr−1|µ〉

〈µ|(η+)r−1ηr−1|µ〉 −
〈µ|(η+)rHηr |µ〉
〈µ|(η+)rηr |µ〉 . (22)

For µ = 0 we evidently have Yang’s functions for which all the gaps are strictly equal to
E. Forµ 6= 0 we expect a structure in1r(|µ|2). In fact all the quantities in equation (22)
can be calculated using onlyN (|µ|2) and 〈µ|H |µ〉 equation (18). For a general operator
Q we can calculate〈µ|(η+)rQηr |µ〉 through the relation

〈µ|(η+)rQηr |µ〉 = (1+ |µ|2)−M ∂r

∂(µ∗)r
∂r

∂µr
[(1+ |µ|2)M〈µ|Q|µ〉] (23)

which indicates that forρ ≡ |µ|2 the generating function for the matrix elements ofQ
between the depleted states is proportional to(1 + ρ)M〈µ|Q|µ〉, which for Q ≡ 1 and
Q ≡ H furnishes all the input for equation (22).

The detailed analysis of equation (22) confirms a very interesting structure of1r as a
function of ρ,M and r. The precise description will be given elsewhere but we note here
that the gaps as a function ofρ go through a maximum forr ≈ M

2 which in turn disappears
for r > M

2 . This confirms that the half-filling point(N = M
2 ) plays a special role for the

Hubbard model. Equation (23) may be used to obtain the following simple result for the
energy dispersion in a coherent pairing state:

(1H)2

〈µ|H |µ〉2 =
ρ

M
(24)

whereρ = |µ|2. This indicates that the energy fluctuations are normal in the thermodynamic
sense, as in the grand canonical ensemble. Similarly, in the first depleted state|µ; 1〉

(1H)21

〈H 〉21
= ρ(2+ 2Mρ −Mρ2+M2ρ2)

(M − 1)(1− ρ +Mρ)2 . (25)

Note that the dispersion in the first depleted state equation (25) is always greater than that
in a spin coherent state (SCS), equation (24). Analogous, if more complex, results hold for
higher depleted states.
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Since the coherent pairing states are not eigenstates of the Hubbard Hamiltonian, they
possess a non-trivial time dependence. This time evolution is easily calculable via the time-
dependent Schrödinger equation due to the simple algebraic structure of the model. For the
case of a conventional coherent state satisfyinga|z〉 = z|z〉 evolving under the action of a
HamiltonianH = ω(a+a+ 1

2), the evolution is simply expressed by the propagator(h̄ = 1)

|〈z(0)|z(t)〉| = exp(|z|2[cosωt − 1]). (26)

In the case of the coherent pairing state equation (17), the analogous result, with equation (7)
is

|〈µ(0)|µ(t)〉| =
∣∣∣∣ (1+ |µ|2eitE)M

(1+ |µ|2)M
∣∣∣∣ . (27)

In the limit M → ∞, µ→ z/
√
M (corresponding to the group contractionη → √Ma+,

compare equation (11)) we recover the conventional (bosonic) case equation (26).

4. Off-diagonal long-range order

The presence of ODLRO [16] is detected by the non-vanishing of correlators such as
〈a†s b†sbrar〉 as |r − s| → ∞. Yang has shown that his states display ODLRO which, in the
thermodynamic limit, is proportional ton2(1− n2), wheren2 ≡ N/M is the pair density.
We may similarly show that our SCS states|µ〉, µ 6= 0, exhibit ODLRO, also proportional
to n2(1− n2) where the average pair densityn2 = 〈N〉/M. Additionally, the states|µ; r〉
exhibit ODLRO and all the results reduce to those of Yang forµ = 0 [17]. Thus the
states|µ〉, |µ; r〉 are superconducting for allµ and r. It is worth noting that although
〈ψN |η|ψN 〉 = 0, which makesη unsuitable for defining an order parameter in the usual
sense,〈µ|η|µ〉 6= 0 as in the analogous BCS case.

5. Mean-field theory and related models

We may now write a mean-field version of the Hubbard HamiltonianHMF =∑k Hk

Hk = Ek(a†kak + b†kbk)+ 2W(1∗kηk +1kη
†
k) (28)

with ηq =
∑

k akbq−k(q = π) and effective energiesEk which include theT0 andT1 terms of
equations (2) and (3). The spectrum-generating algebra for the Hamiltonian equation (28)
is uk (2). The non-diagonal terms are the number-non-conserving analogues of a spin-
density wave system (see, for example [18]) and were already observed in a multiphase
SU(8) model [19], where they were called ‘anomalous’ terms, their relation to the Hubbard
model at that time not having been appreciated. Thus in the mean-field approximation the
dynamical group is⊗kUk(2). The associated group parameters (Bogoliubov transformation
angles) areµk, vector analogues of theµ parameter in theU(2) which is what remains of
the dynamical symmetry in the exact model.

It is possible to demonstrate that relation (7) (with modifiedE) can be fulfilled by
Hamiltonians other than (1). Yang already mentioned the possibility [1] of non-local
interactions satisfying equation (7) with appropriately modifiedη. It is interesting to observe
that at least one case of a truly non-local interaction satisfies equation (7). It concerns an
extension of the pair-hopping model [20] of the form [17]

Hph = T0+ T1+ V
∑
〈rs〉
ηr · ηs −

V

2

∑
r

nr (29)
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which satisfies [Hph − (T0 + T1), η
+] = V η+. However, other extensions are possible for

which the coherent pairing state|µ〉 is a useful tool [17].
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